

STAY chair

Ref: 900213G13 Report Data 31.10.2012

Certificates

ISO 9001:2008

ISO 14001:2004

ISO 14006. Ecodesign

PEFC. Programme for the Endorsement of Forest Certification

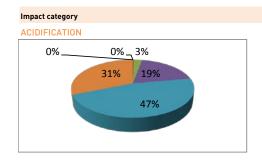
FSC. Forest Stewardship Council GBCe. Green Building Council Spain

1. Details of the system				
Туре	New Product	(Redesign	Studied Year 2012
Declaration Scope:	From extraction of raw materials The detail of each of the phases	•	•	
Materials	Production	Transport	Use	End of life
Including the extraction and processing of raw materials and component sourcing to its delivery at the Actiu Technological Park.	Consider the production and assembly processes used in Actiu.	Includes from the Actiu Technological Park to our customers facilities. Transport is provided through light commercial transport.	This stage has not environmentally relevance for life cycle analysis.	Any product can be disposed of in different ways, or become a resource. Drawing on national average dates, it is supposed that aluminium, wood and cardboard packaging is recycled, while the rest is treated as urban waste.

		Percentage %	Quality of finishes		
	KG of product solution		Production of raw materials	Processed	
Plástico	7,7204	33,38%	Bibliographic data	Bibliographic data	
reciclable	8,962	38,75%	Bibliographic data	Bibliographic data	
Cartón	2,825	12,21%	Bibliographic data	Bibliographic data	
Acero	2,7076	11,71%	Bibliographic data	Bibliographic data	
Varios	0,915	3,96%	Bibliographic data	Bibliographic data	
TOTAL	23,13	100,00%			
% recicled materials		50,96%			
% reciclable materials		91,21%			

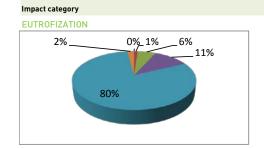
ACTIU product design is made to facilitate the separation of its components and recycling.

The product is designed to help companies LEED® certification. You can obtain LEED® credits with our product. On the one hand, contains a high percentage of recycled materials and is manufactured with low emissions to the atmosphere. On the other hand, has been designed with ergonomic standards. Finally, it can be easily recycled because it is designed for disassembly and identification of very simple components. This will help you achieve LEED® credits for employee health and innovation


The verification process life cycle analysis is performed by independent experts in Ecodesign (Consultant Business Area) and using the criteria of the standard UNE ISO 14006 "Ecodesign".

STAY chair

Ref: 900213G13 Report Data 31.10.2012

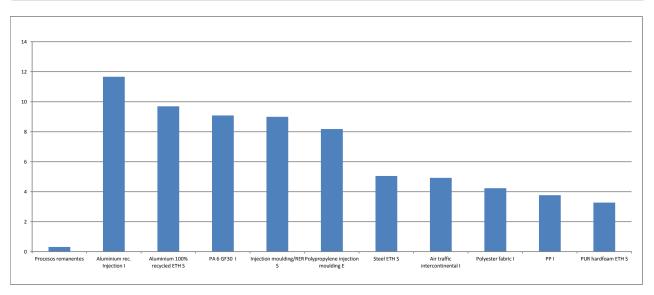

3. Impacts produced by category. Five substaces area included in each category have the greatest impact in each category

Substance	Unit	Total
Remaining Substances	kg SO2 eq	0
Ammonia	kg SO2 eq	0,001622994
Nitrogen dioxide	kg SO2 eq	0,015177533
Nitrogen oxides	kg SO2 eq	0,110125116
Sulfur dioxide	kg SO2 eq	0,267899708
Sulfur oxides	kg SO2 eq	0,178840761

TOTAL

kg SO2 eq 0,573666112

Substance	Unit	Total	
Remaining Substances	kg P04 eq	4,90277E-05	
Ammonia	kg P04 eq	0,00035503	
Dinitrogen monoxide	kg P04 eq	0,002032587	
Nitrogen dioxide	kg P04 eq	0,003946159	
Nitrogen oxides	kg P04 eq	0,02863253	
Ammonium, ion	kg P04 eq	0,000739632	

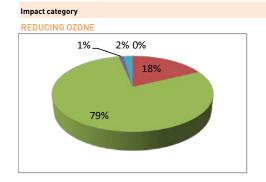

TOTAL

kg P04--- eq 0,042795193

Impact ca	tegory
GLOBAL	WARMING
	0%6% 3%0%
	16%
	75%

Substance	Unit	Total
Remaining Substances	kg CO2 eq	0,16903743
Carbon dioxide	kg CO2 eq	58,53927794
Carbon dioxide, fossil	kg CO2 eq	12,82474961
Carbon monoxide	kg CO2 eq	0,253320437
Dinitrogen monoxide	kg CO2 eq	4,628043254
Ethane, 1,1,1,2-tetrafluoro-, HFC-13	kg CO2 eq	1,980166265
TOTAL	kg CO2 eq	81,79881909

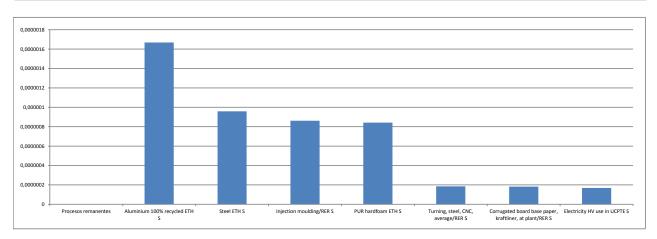
Impact of group elements (materials, processes, energy, use, transport and waste)



Ref: 900213G13

STAY chair

Report Data 31.10.2012


4. Impacts produced by category. Five substaces area included in each category have the greatest impact in each category

Substance	Unit	Total
Remaining Substances	kg CFC-11 eq	3,40261E-11
Methane, bromochlorodifluoro-,	kg CFC-11 eq	9,03575E-07
Halon 1211 Methane, bromotrifluoro-, Halon 1301	kg CFC-11 eq	4,01158E-06
Methane, chlorodifluoro-, HCFC-22	kg CFC-11 eq	5,69542E-08
Methane, tetrachloro-, CFC- 10	kg CFC-11 eq	1,13848E-07
Methane, trichlorofluoro-, CFC-11	kg CFC-11 eq	3,42144E-08

TOTAL kg CFC-11 eq 5,12021E-06

Impact of group elements (materials, processes, energy, use, transport and waste)

Impact category
PHOTOCHEMICAL SMOG
11% 2% 2% 8% 2%
75%

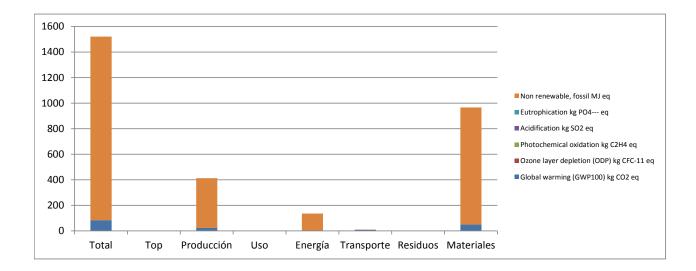
Substance	Unit	Total	
Remaining Substances	kg C2H4 eq	0,00045747	
Butane	kg C2H4 eq	9,77379E-05	
Carbon monoxide	kg C2H4 eq	0,004356466	
Carbon monoxide, fossil	kg C2H4 eq	0,000662447	
Ethane	kg C2H4 eq	0,000117643	
Ethene	kg C2H4 eq	0,000133732	

TOTAL kg C2H4 eq 0,093671942

inipact category	
NON-RENEWABLE RESOURCES	
7% 13%_ 1%	
7%13%1% 1%	
1%	
34%	

Substance	Unit	Total
Remaining Substances	MJ eq	2,811619956
Coal, 18 MJ per kg, in ground	MJ eq	85,86872477
Coal, 29.3 MJ per kg, in ground	MJ eq	67,72927746
Coal, brown, 10 MJ per kg, in groun	MJ eq	2,247552
Coal, brown, 8 MJ per kg, in ground	MJ eq	12,72588697
Coal, brown, in ground	MJ eq	25,83560348
TOTAL	MJ eq	1438,46298

WASTE	Total NO HAZARDOUS	KG	3,91	
	Total HAZARDOUS	KG	0,0502	



STAY chair

Ref: 900213G13 Report Data 31.10.2012

5. Impact produced by life cycle stage. In includes six stages: Production, Use, Energy, Transport, Waste and Materials.

Impact Categry	Uts.	Total	Тор	Production	Use	Energy	Trsp.	Waste	Mat.
Global warming (GWP100)	kg CO2 eq	81,79881909	0	23,42415677	0	2,543331121	6,917	1,64626E-08	48,91
Ozone layer depletion (ODP)	kg CFC- 11 eq	5,12021E-06	0	1,04676E-06	0	2,25416E-07	6E-10	0	4E-06
Photochemical oxidation	kg C2H4 eq	0,093671942	0	0,028237427	0	0,003116265	0,005	1,34516E-11	0,057
Acidification	kg SO2 eq	0,573666112	0	0,226539486	0	0,015433805	0,05	2,07003E-10	0,282
Eutrophication	kg P04 eq	0,042795193	0	0,006725231	0	0,00134172	0,007	4,24901E-11	0,028
Non renewable, fossil	MJ eq	1438,46298	0	388,7044873	0	132,9768669	0,01	0	916,8

Ref: 900213G13

STAY chair

Report Data 31.10.2012

6. Ecodesign improvements considered.

ACTIU products are designed considering different environmental strategies. According to their level of complexitiy, the strategies used are classified into one of the following. Here are some of the choices for ecodesign significant product.

PRODUCT STRATEGY ECODESIGN	CHOICES					
	Designed to be manufactured with 51% recycled materials					
	100% recycled aluminium					
Low impact materials selection	Powder paint with no VOC amissions					
	Limitation on use of hazardous substances. Whithout chromium, mercury, cadmium					
	Recycled cardboard packaging					
	Optimizing energy use throughout the production process					
	Low manufacturing energy consumption. Minimum environmental impact.					
Optimization of product techniques	Painting processes of high technology systems.					
optimization of product techniques	Recovery unused paint in the process. Zero emissions of VOCs.					
	Closed water circuits. Heat recovery.					
	Automated manufacturing systems. Planning the cutting process.					
Optimization of distribution system	Reducing energy. Removable systems. Low volume packaging. Spaces optimization.					
optimization of distribution system	Saving energy and Flexibility. Modular system adaptable between diferent models.					
	Long life guarantees					
Optimization of product life	Adaptability and growth facilities. Replacement parts possibilities.					
optimization of product the						
	Easy Maintenace					
	Easy separation of product components					
Optimization of the end of system life	High degree of recyclability of the product: 91%					
opinization of the end of system the	Packaging reuse system between ACTIU and its providers to avoid waste generation					

Bibliography and references

ISO 14025 Environmental labels and declarations – Type III

UNE-EN-ISO ISO 14006 "Ecodesign".

ISO 14006 "Ecodesign"

UNE ISO 14006 "Ecodesign"

Environmental impacts methods

Data base: ETH-ESU System processes, Ecoinvent system processes, IDEMAT, EDIP, IPCC, Ecological Scarcity 2006.